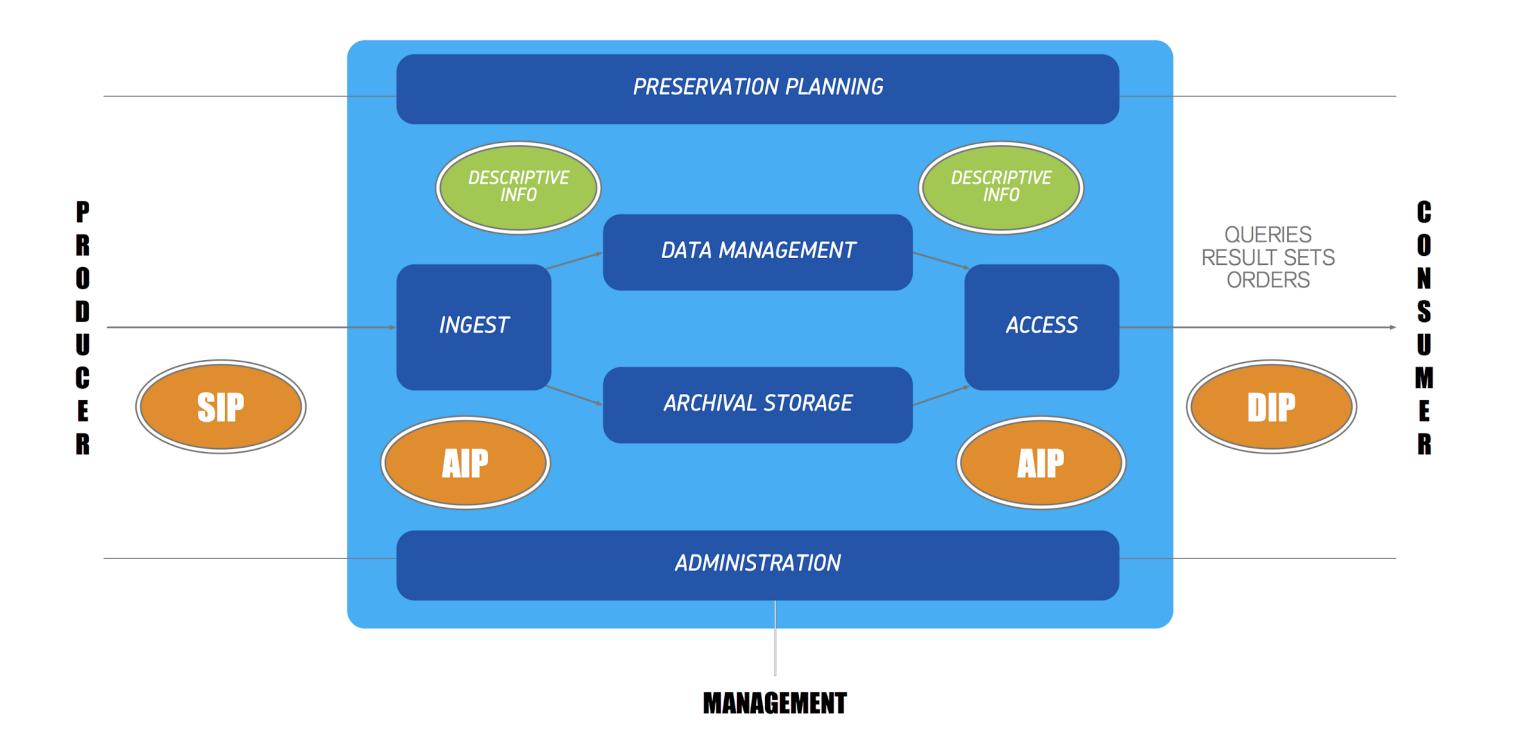
Topic 3 - Introduction to the OAIS Reference Model

Open Archival Information System ISO 147214:2012


Speaker notes

Background and history:

NASA needed to come up with a good strategy for serious long-term preservation of their space flight data.

So they invented the OAIS model.

The Graph

Speaker notes

This is the basic OAIS model representation graph. You may encounter this graph in various different manifestations, but the components should always be the same.

Mandatory responsibilities

- Negotiate & accept appropriate information.
- Obtain sufficient control over the information.
- Determine scope of community needs.
- Ensure the preserved info is understandable independently without assistance.
- Safeguard your items (contingencies, deletions, ...)
- Make it available.

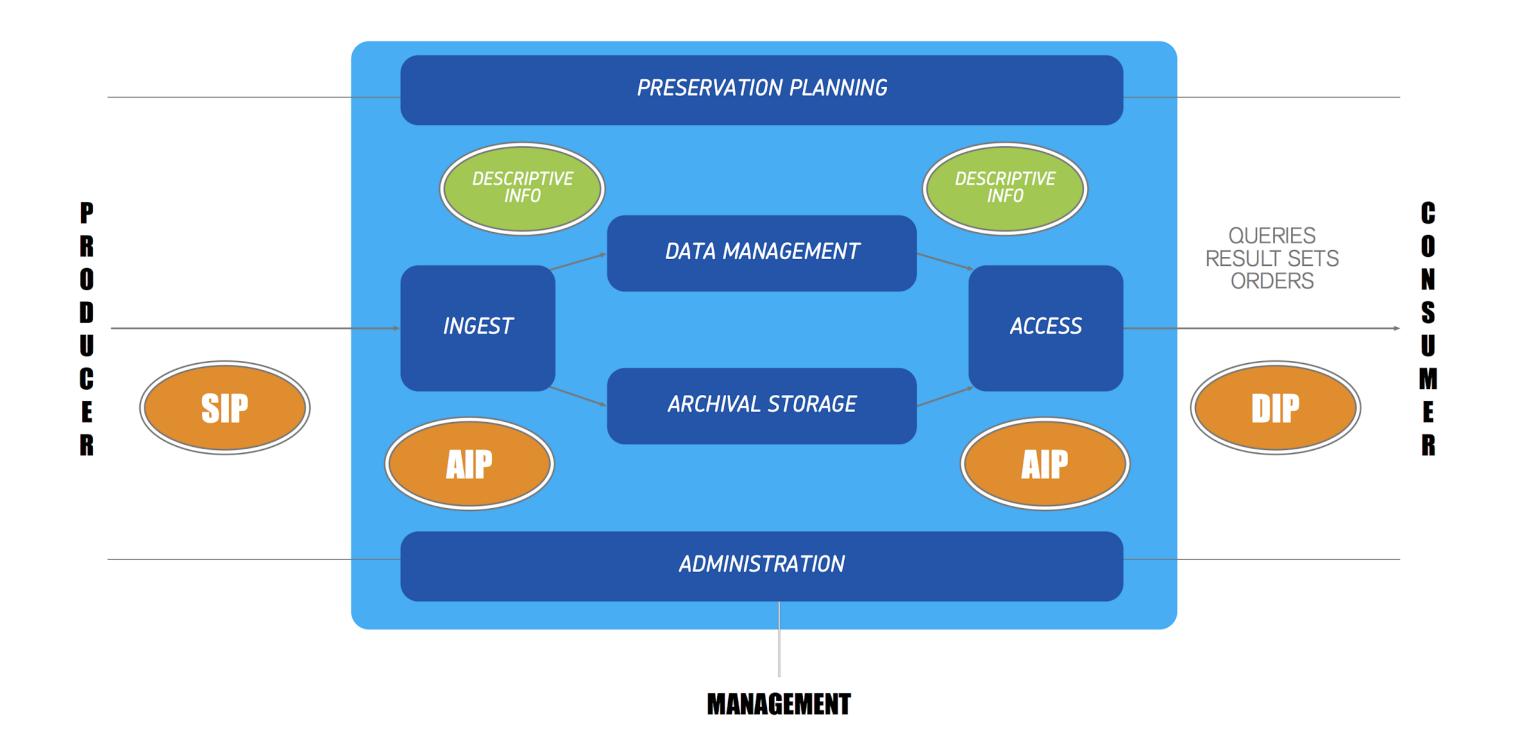
Speaker notes

The reference model also defines mandatory responsibilities:

An OAIS-type archive must meet a set of six minimum responsibilities to do with the ingest, preservation, and dissemination of archived materials.

- From information producers: Negotiate for and accept appropriate information
- To meet long-term preservation objectives: Obtain sufficient control of the information
- Of the archive's user community: Determine its scope;
- Ensure that the preserved information is independently understandable to the user community. The information can be understood by users without the assistance of the information producer;
- Follow documented policies and procedures to ensure the information is preserved against all reasonable contingencies, and that there are no ad hoc deletions.
- Make the preserved information available to the user community,
 - Enable dissemination of authenticated copies of the preserved information...
 - In its original form or in a form traceable to the original.

The 3 Areas of Operation


- 1. External environment producer, consumer, and management
- 2. Functional components of the repository itself
- 3. Information packages being preserved and disseminated

Speaker notes

The OAIS reference model describes three areas that collectively make up a repository's operation.

Each part plays equally important roles in the long-term conservation and access of digital information.

Locate the 3 Areas

Speaker notes

Give it a try :) We'll see the details later on.

- External environments: Producer, Consumer, Management
- Functional components: Preservation planning, Data Management, Archival Storage, Ingest, Access, Administration
- Information packages: SIP, AIP, DIP

Information Objects

"[are] either a physical or digital **Data Object** with Representation Information that 'allows for the full interpretation of data into meaningful information" —

ImpactZone

Speaker notes

In notes on this slide

Information Object Packages

Speaker notes

No notes on this slide.

SIP, AIP, DIP

- SIP:
 Submission Information Package
- AIP:
 Archival Information Package
- DIP:
 Dissemination Information Package

Speaker notes

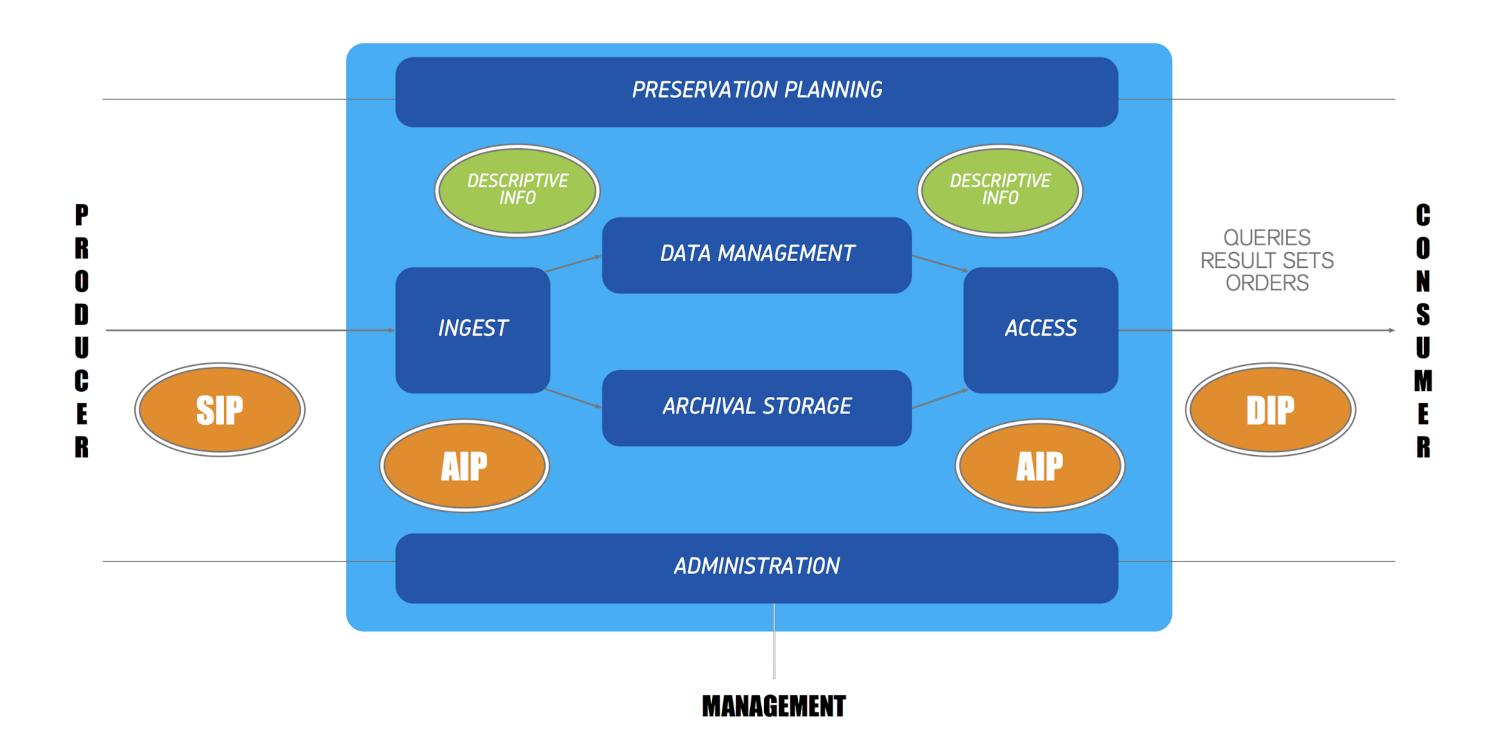
What's a SIP?

A SIP is "what comes in" (from the producer), but it's not necessarily in a proper form to be preserved properly, or may not meet the archives requirements: so some actions are needed (metadata is added/extracted, a uniqute ID (Object ID, archive signature) is assigned, filename standardization/detox, etc).

There's more about different forms SIPs can have, later on in "Ingest".

What's an AIP?

The result of the afore mentioned preservation process is the "AIP". (usually pronounced: "Ey-Aye-Pee")


If done right, then the AIP can be used to generate any other derivative forms.

What's a DIP?

The DIP is "what goes out" (to the consumer), when someone requests a copy of the data stored as AIP. It might be the complete AIP as-is, but it could also just be a subset or even necessary/useful to put it in a different form (e.g. different codec/format).

Popular example for a DIP would be an access copy to put on a website for browsing the archive.

Find the Information Packages

Speaker notes

No notes on this slide.

Information Objects

"[are] either a physical or digital Data Object with Representation Information that 'allows for the full interpretation of data into meaningful information" —

ImpactZone

Speaker notes

We've seen this definition before, but: What could be meant by "Representation Information" to be added to the Data Objects to form Information Objects?

Representation Information Examples? Ideas?

Speaker notes

Hint: We've talked about how computer data can be represented, and what is needed to do so. Example: Text.

Representation Information

ASCII (1977/1986)

	_θ	_1	_2	_3	_4	_5	_6	_7	_8	_9	_A	_B	_c	_D	_E	_F
Θ_	NUL	SOH	STX	ETX	E0T	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	S0	SI
Θ	0000	0001	0002	0003	0004	0005	0006	0007	0008	0009	000A	000B	000C	000D	000E	000F
1_	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	EM	SUB	ESC	FS	GS	RS	US
16	0010	0011	0012	0013	0014	0015	0016	0017	0018	0019	001A	001B	001C	001D	001E	001F
2_	SP	į.	п	#	\$	%	&	1	()	*	+	,	-		/
32	0020	0021	0022	0023	0024	0025	0026	0027	0028	0029	002A	002B	002C	002D	002E	002F
3_	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
48	0030	0031	0032	0033	0034	0035	0036	0037	0038	0039	003A	003B	003C	003D	003E	003F
4_	@	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0
64	0040	0041	0042	0043	0044	0045	0046	0047	0048	0049	004A	004B	004C	004D	004E	004F
5_	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	[\]	^	
80	0050	0051	0052	0053	0054	0055	0056	0057	0058	0059	005A	005B	005C	005D	005E	005F
6_	× .	а	b	С	d	е	f	g	h	i	j	k	l	m	n	О
96	0060	0061	0062	0063	0064	0065	0066	0067	0068	0069	006A	006B	006C	006D	006E	006F
7_	р	q	r	S	t	u	٧	W	Х	у	Z	{		}	~	DEL
112	0070	0071	0072	0073	0074	0075	0076	0077	0078	0079	007A	007B	007C	007D	007E	007F

Letter Number Punctuation Symbol Other undefined

Speaker notes

"Representation Information expressed in ASCII needs the additional Representation Information for ASCII, which might be a physical document giving the ASCII Standard" — CCSDS, 2002

Information = a combination of Data and Information about how to represent that data => Representation Information.

The purpose of the Representation Information object is to convert the bit sequences into more meaningful information.

Representation Information ...for images, audio, video?

Speaker notes

With media files, that might be the information about how the bitstream of the audio/video codec is structured and therefore how it can be interpreted back as audio/video. Same goes for the container, etc.

This applies to all data formats, btw.

Representation Information So, what could you store alongside your files?

Speaker notes

- Codec format specification (technical white paper)
- Encoding/decoding software
- Preview images in other formats or lower resolutions (to show how it should render)
- Example source code
- Pseudo code
- .

That's why it's so important to avoid undocumented (=black box) formats for preservation, as the Representation Information often cannot be supplied.

It's a recursion.

Digital Representation Information is an Information Object that may have its own Data Object and its own Representation Information associated with understanding each Data Object.

Speaker notes

No notes on this slide

...meaning:

- To preserve the meaning of an Information
 Object, its Representation Information must
 also be preserved.
- This recursion continues until physical forms, which can be understood by the Designated Community, are encountered.

Speaker notes

The good question is of course: What can you assume to be taken as "clear enough" so that you don't have to provide it in the information package?

SIP/DIP: currently "well known" or widely supported "out of the box" stuff can be left out. AIP: hm... Rosetta stone?

Information Types

- Semantic
- Structure
- Other

Speaker notes

Information = a combination of Data and Representation Information

- Semantic Information: adds meaning to it. e.g. for a sequence of text characters the information as to which language was being expressed
- Structure Information: (often referred to as the 'format' of the digital object)
- Other Representation Information: e.g. Software needed to process a database file would be regarded as Other Representation Information.

Speaker notes

No notes on this slide.

Information Types

Semantic

Example: Text, but which language?

Structure

Example: File format definition (header, payload, ...)

Other

None of the above ;)

Example: Which software required

Common misunderstandings

- You don't have to implement OAIS, but it's a good reference.
- There's no "common format" for SIPs, AIPs, DIPs. but there are good/best practices
- It doesn't have to involve XML
 ...or a specific metadata standard. (but it also doesn't hurt;P)
- Perfect can be the enemy of good (Aim for a sweet spot!)
- Don't assume "it's clear to everyone" WHO your designated users are.

Speaker notes

- Sweet spot = Minimalistic standard = As simple as possible, as complicated as necessary.
- Designated community/users: Take some time to discuss and maybe write it down, so it can be used to make informed decisions. Now and later on.

Comments? Questions?

Speaker notes

No notes on this slide.

OAIS Background

- The Consultative Committee for Space Data Systems (CCSDS) initiated work aimed at developing formal standards for the long-term storage of digital data generated from space missions.
- The OAIS reference model was approved in January 2002 as ISO International Standard 14721;
- a revised and updated version was published in 2012 as ISO Standard 14721:2012.
- Design and revisions have taken place concurrent and in partnership with the growth of the profession into one that has boundaries, curricula, and standards of practice.

Speaker notes

Vo notes on this slide

OAIS Background

- For a type of archive consisting of an organization of people and systems that has accepted the responsibility to preserve information for one or more designated communities.
- A reference model = an abstract framework or domain-specific ontology consisting of an interlinked set of clearly defined concepts produced by an expert or body of experts in order to encourage clear communication.
- Strictly a conceptual framework.
- Sets the standard for the activities that are involved in preserving a digital archive rather than the method for carrying out those activities

No notes on this slide

Links

- OAIS Reference Model (ImpactZone)
- The OAIS and the NSSDC (National Space Science Data Center)
- Preservation Metadata and the OAIS Information Model
- Open Archival Information System (Wikipedia)